skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Khandelwal, Ankush"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Representation Learning), a novel multimodal meta-learning framework for few-shot learning in heterogeneous systems, designed for science and engineering problems where entities share a common underlying forward model but exhibit heterogeneity due to entity-specific characteristics. TAM-RL leverages an amortized training process with a modulation network and a base network to learn task-specific modulation parameters, enabling efficient adaptation to new tasks with limited data. We evaluate TAM-RL on two real-world environmental datasets: Gross Primary Product (GPP) prediction and streamflow forecasting, demonstrating significant improvements over existing meta-learning methods. On the FLUXNET dataset, TAM-RL improves RMSE by 18.9% over MMAML with just one month of few-shot data, while for streamflow prediction, it achieves an 8.21% improvement with one year of data. Synthetic data experiments further validate TAM-RL’s superior performance in heterogeneous task distributions, outperforming the baselines in the most heterogeneous setting. Notably, TAM-RL offers substantial computational efficiency, with at least 3x faster training times compared to gradient-based meta-learning approaches while being much simpler to train due to reduced complexity. Ablation studies highlight the importance of pretraining and adaptation mechanisms in TAM-RL’s performance. Keywords: Representation Learning, meta-learning, few-shot learning, environmental applications, time-series. DOI:10.1137/1.9781611978520.2 
    more » « less
  2. Time series modeling, a crucial area in science, often encounters challenges when training Machine Learning (ML) models like Recurrent Neural Networks (RNNs) using the conventional mini-batch training strategy that assumes independent and identically distributed (IID) samples and initializes RNNs with zero hidden states. The IID assumption ignores temporal dependencies among samples, resulting in poor performance. This paper proposes the Message Propagation Through Time (MPTT) algorithm to effectively incorporate long temporal dependencies while preserving faster training times relative to the stateful algorithms. MPTT utilizes two memory modules to asynchronously manage initial hidden states for RNNs, fostering seamless information exchange between samples and allowing diverse mini-batches throughout epochs. MPTT further implements three policies to filter outdated and preserve essential information in the hidden states to generate informative initial hidden states for RNNs, facilitating robust training. Experimental results demonstrate that MPTT outperforms seven strategies on four climate datasets with varying levels of temporal dependencies. 
    more » « less
  3. Accurate and timely crop mapping is essential for yield estimation, insurance claims, and conservation efforts. Over the years, many successful machine learning models for crop mapping have been developed that use just the multispectral imagery from satellites to predict crop type over the area of interest. However, these traditional methods do not account for the physical processes that govern crop growth. At a high level, crop growth can be envisioned as physical parameters, such as weather and soil type, acting upon the plant, leading to crop growth, which can be observed via satellites. In this paper, we propose a Weather-based Spatio-Temporal segmentation network with ATTention (WSTATT), a deep learning model that leverages this understanding of crop growth by formulating it as an inverse model that combines weather (Daymet) and satellite imagery (Sentinel-2) to generate accurate crop maps. We show that our approach provides significant improvements over existing algorithms that solely rely on spectral imagery by comparing segmentation maps and F1 classification scores. Furthermore, effective use of attention in WSTATT architecture enables the detection of crop types earlier in the season (up to 5 months in advance), which is very useful for improving food supply projections. We finally discuss the impact of weather by correlating our results with crop phenology to show that WSTATT is able to capture the physical properties of crop growth. 
    more » « less
  4. Shekhar, Shashi; Papalexakis, Vagelis; Gao, Jing; Jiang, Zhe; Riondato, Matteo (Ed.)
    Accurate and timely crop mapping is essential for yield estimation, insurance claims, and conservation efforts. Over the years, many successful machine learning models for crop mapping have been developed that use just the multispectral imagery from satellites to predict crop type over the area of interest. However, these traditional methods do not account for the physical processes that govern crop growth. At a high level, crop growth can be envisioned as physical parameters, such as weather and soil type, acting upon the plant, leading to crop growth which can be observed via satellites. In this paper, we propose a weather-based Spatio-Temporal segmentation network with ATTention (WSTATT), a deep learning model that leverages this understanding of crop growth by formulating it as an inverse model that combines weather (Daymet) and satellite imagery (Sentinel-2) to generate accurate crop maps. We show that our approach provides significant improvements over existing algorithms that solely rely on spectral imagery by comparing segmentation maps and F1 classification scores. Furthermore, effective use of attention in WSTATT architecture enables the detection of crop types earlier in the season (up to 5 months in advance), which is very useful for improving food supply projections. We finally discuss the impact of weather by correlating our results with crop phenology to show that WST 
    more » « less
  5. Shekhar, Shashi; Zhou, Zhi-Hua; Chiang, Yao-Yi; Stiglic, Gregor (Ed.)
    Creating separable representations via representation learning and clustering is critical in analyzing large unstructured datasets with only a few labels. Separable representations can lead to supervised models with better classification capabilities and additionally aid in generating new labeled samples. Most unsupervised and semisupervised methods to analyze large datasets do not leverage the existing small amounts of labels to get better representations. In this paper, we propose a spatiotemporal clustering paradigm that uses spatial and temporal features combined with a constrained loss to produce separable representations. We show the working of this method on the newly published dataset ReaLSAT, a dataset of surface water dynamics for over 680,000 lakes across the world, making it an essential dataset in terms of ecology and sustainability. Using this large unlabelled dataset, we first show how a spatiotemporal representation is better compared to just spatial or temporal representation. We then show how we can learn even better representations using a constrained loss with few labels. We conclude by showing how our method, using few labels, can pick out new labeled samples from the unlabeled data, which can be used to augment supervised methods leading to better classification. 
    more » « less
  6. Shekhar, Shashi; Zhou, Zhi-Hua; Chiang, Yao-Yi; Stiglic, Gregor (Ed.)
    In many environmental applications, recurrent neural networks (RNNs) are often used to model physical variables with long temporal dependencies. However, due to minibatch training, temporal relationships between training segments within the batch (intra-batch) as well as between batches (inter-batch) are not considered, which can lead to limited performance. Stateful RNNs aim to address this issue by passing hidden states between batches. Since Stateful RNNs ignore intra-batch temporal dependency, there exists a trade-off between training stability and capturing temporal dependency. In this paper, we provide a quantitative comparison of different Stateful RNN modeling strategies, and propose two strategies to enforce both intra- and inter-batch temporal dependency. First, we extend Stateful RNNs by defining a batch as a temporally ordered set of training segments, which enables intra-batch sharing of temporal information. While this approach significantly improves the performance, it leads to much larger training times due to highly sequential training. To address this issue, we further propose a new strategy which augments a training segment with an initial value of the target variable from the timestep right before the starting of the training segment. In other words, we provide an initial value of the target variable as additional input so that the network can focus on learning changes relative to that initial value. By using this strategy, samples can be passed in any order (mini-batch training) which significantly reduces the training time while maintaining the performance. In demonstrating the utility of our approach in hydrological modeling, we observe that the most significant gains in predictive accuracy occur when these methods are applied to state variables whose values change more slowly, such as soil water and snowpack, rather than continuously moving flux variables such as streamflow. 
    more » « less
  7. Abstract Lakes and reservoirs, as most humans experience and use them, are dynamic bodies of water, with surface extents that increase and decrease with seasonal precipitation patterns, long-term changes in climate, and human management decisions. This paper presents a new global dataset that contains the location and surface area variations of 681,137 lakes and reservoirs larger than 0.1 square kilometers (and south of 50 degree N) from 1984 to 2015, to enable the study of the impact of human actions and climate change on freshwater availability. Within its scope for size and region covered, this dataset is far more comprehensive than existing datasets such as HydroLakes. While HydroLAKES only provides a static shape, the proposed dataset also has a timeseries of surface area and a shapefile containing monthly shapes for each lake. The paper presents the development and evaluation of this dataset and highlights the utility of novel machine learning techniques in addressing the inherent challenges in transforming satellite imagery to dynamic global surface water maps. 
    more » « less